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Analysis is presented for evaluating PPM error probabilities in optical photodetector
receivers governed by statistics due to Gaussian mixture densities. A Gaussian mixture
density arises when a discrete variable (e.g., a photodetector count variable} is added to a
continuous Gaussian varigble (e.g., thermal noise). Making use of some properties of
photomultiplier Gaussian mixture distributions, some approximate error probability
Sformulas can be derived. These appear as averages of M-ary orthogonal Gaussian error
probabilities, of which the latter are well documented in the literature. The use of a pure
Gaussian assumption is considered, and when properly defined, appears as an accurate

upper bound to performance.

l. Introduction

In optical PPM communications, digital data are trans-
mitted by placing an optical light pulse in one of a set of
designated pulse slots, the latter constituting a PPM frame
(Ref. 1). Thus each pulse represents a data word, or symbol,
depending on its pulse slot location. At the PPM optical
receiver, the photodetected output is integrated over each slot
time to generate a slot voliage. These voltages are then com-
pared over a PPM frame, and the largest is used to decode the
PPM symbol. In past studies, symbol error probabilities for
this optical PPM link have been analyzed for Gaussian,
Poisson, and erasure voltage models (Refs, 1, 2, 3). These
various models arise from different assumptions made on the
receiver model. Discrete count statistics arise from use of ideal,
high-gain photomultipliers, for which receiver thermal noise is
negligible, while erasure models occur if in addition back-
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ground noise is neglected. Gaussian models occur if high
receiver power levels are assumed and receiver thermal noise is
included. In this report we extend the study to general
Gaussian mixture densities. A Gaussian mixture density is the
probability density of the sum of a discrete and a continuous
Gaussian random variable and will occur if both photodetector
count statistics and thermal noise are included.

Let the PPM slot integrations generate the sequence of
voltage variables

y}.=ak}.+n]., j=1,2,..M 8]

where {k;}is the discrete (count) sequence, M is the number
of slots, a is a scalar, and {nj} is a sequence of independent




Gaussian zero mean variables. The voltage variable y, corre-
sponds to that which would be generated from the integration

- of a photodetector output containing additive thermal noise.
For this model the scalar corresponds to (Ref. 3)

a=eR,|T @)
where
e = electron charge
R; = photodetector load resistance
T = slotintegration time

The sequence k; are independent count variables, in which the
signaling slot has discrete count probabilities.

Prob(kj = k) e P (%) (3)

while all other (nonsignaling) slots have

Prob(k; = k) éPo(k) )

The slots therefore generate a voltage y given by the mixture
density

p0) = 2L PR Y (-ak), i=0,1 (5)
k=0

where

2 2
1 v {20
V(y) =———e n
0 ma

‘Here 03 is the variance of the integrated Gaussian thermal
_noise variates. For the typical optical receiver at noise temper-
ature T°°

o2 = 4kT°R,|T (6)

where k is Boltzmann’s constant. We point out that, based on
a true slot voltage comparison test among all slots, the PPM
channel with mixture densities cannot be an erasure channel,
since the probability of equal slot voltages (an erasure event) is
always zero with continuous densities as in (5),

Although primary photoelectrons released from photo
emissive surfaces are usually modeled as obeying a Poisson

process, secondary electrons generated via multi-anode second-
ary emissions as in photomultiplier vacuum tubes, or by ava-
lanche mechanisms, as in avalanche photodetectors (APD),
generally produce more symmetrical distributions. These
photomultiplied electron distributions are usually modeled
(Refs. 4, 5) with Gaussian-shaped discrete probabilities of the
form ‘

G —-cm)?j2o2,
P(k) = ———e R 7
p)
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where my; is the mean primary count, G is the mean photo-
detector gain, C is a proportionately constant and o, is the
standard deviation of the output counts. The parameter 0y is
often called the photodetector “spread,” and typically

o2 = G’m, (8)

where 2 < & < 3. (For a photomultiplier tube & = 2, while for
an APD, § = 3). The coefficient C, in (7) is defined by

o 2, 2
1 Z e—(k—-Gm’.) j20%; ©)

2 .
27radl. k=0

-1 -
¢l o=

For Gm; > 10, C is almost identically unity. The PPM
symbol error probability, based on a comparison test among
the M slot voltage, is then given by

00 ¥y M-1 :
PSE = 1~ f pl(y)[f po(x)dx:l dy (10)

The bracketed term corresponds to the distribution function
of the mixture density p,(x). This distribution function can be
written as

y y - aGm,,
f py(x) dx = F(—;—) D+ep)] (D)

0
where
y 2
1 =t%]2

F = e dt 12
o[ & (12

2 _ 2.2 2
0y = @705, 0, (13)

and e(y) is the fractional error in representing the left side of
(11) by a Gaussian distribution function. Extensive studies
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(Refs. 3, 6) have shown that le(y)| is extremely small. Fig-
ure 1a, extracted from Ref. 4, shows how the magnitude le(»)l|
behaves under the condition 6,4, = 0, = 8 for y = 0. The
magnitude function is monotonic in either o4, or o, and is
essentially constant for all y = 0. Figure 1b replots le(¥)| as a
function of § for several values of y. These results simply state
that if the variances of the discrete count and the continuous
added noise are each large enough, the Gaussian mixture
density loses its “discreteness’” in integration. Furthermore the
resulting integral is within |e| of integrating an equivalent
Gaussian density with the same mean and combined variance.
In essence, the Gaussian mixture density behaves as a contin-
uous Gaussian density, as far as integration is concerned.

With (11), the PPM mixture error probability becomes

00 y- (leo M-1 M-1
PSE = ]"f_w pl(y) [F(—%'——“)] [1 +e(y)] dy
(14)

where e(¥) can be either positive or negative at each v, with its
magnitude plotted in Fig, 1. We can immediately write

[1+e()IM! > [1- e, 1M (15)

where [eg[= {e(°)[, and we use the subscript § to indicate that
we have assumed o4, = 8 and o, /e = § in evaluating €(e°).
(For all purposes €z can be taken as the variable in the plot in
Fig. 1b at y = 10). We can therefore bound the integral in (14)
as

M-1

« Y- aGm
j:m p,() P! (——TO) [l +e(y)] dy

>[1- |eﬁ|]M"1 P, (16)
where
o y - aGm\ M1
&i[pﬁ)F—E* @y an
This also means
PSE<1-l1- Ieﬁl]M‘ch (18)
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Hence the right side serves as an upper bound to PSE. To
evaluate this bound, we can write

= y = aGmg\ M-1
. j; p, ) [F oy )] dy

oo

=y
I

= Y, P (k) DM, k) (19)
k=0
with
o _ y-aGm\] M1
dWM, k) = j: ) N (——y a:k) [F(———% °)] dy

(20

We recognize ®(M, k) as the probability that a Gaussian
variable with mean ak and variance o2 exceeds M - 1 indepen-
dent Gaussian variable with mean aGm,, and variance ag. This
& is simply the detection probability associated with M Gaus-
sian orthogonal variable, with the correct one having mean
(ak - aGmyg), all incorrect having mean zero, and all have
variance (ofl + 0(2)). These detection probabilities are known
(Ref. 7) to depend only on the number of variables M and the
signal-to-noise ratio p, the latter defined by

_ 2 -
=(ak aGmy) B (k- Gm,)?

p = (21)
B (G
Thus we can rewrite (20) as simply
S, k) = PD(M, p(k)) (22)

where PD(M, p) is the M-ary Gaussian word detection proba-
bility at an £, /N, of p. This forms (19) as the average, over X,
of a Gaussian M-ary word detection probability whose bit
energy is (k- Gmyg)?.

Some useful approximations to this PSE bound can be
derived. For example, since (1 - €)M-1 > 1 - Me we can write

PSE<1-(1-Mlel)P, = (1-P)+Mles| P, (23)

The first term is now an average word error probability, while
the second appears as a correction term. Clearly, if
M Ieﬁl<<1 - P,, the correction term can be neglected. This
simply requires the discrete integration error plotted in Fig. 1
to be significantly less than 1/M times the desired word error
probability. In this case, the bound 1 - P, can be evaluated by




simply averaging the Gaussian word error probabilities instead
of evaluating (22). This means

PSE< i P, (k) PWE(M, p(%) (24)
k=0

where PWE(M, p) is the Gaussian word error probabilities
(Ref. 7) of an M-ary test with an £, /N, of p. Equation (24)
can be further evaluated by introducing the union bound to
the Gaussian PWE"

[a—

PWEM, p)< = e P2 (25)
Equation (24) becomes
e k-G 2
pE<L 3 Py 1 )
k=0
where we have used
28, 2.2
0* =03, t(20,/a%) 27

For the discrete count distribution of (7) we have

C‘ oo
M-1 1
PSE<( ) )
2 (V2”0d1 1§)

(k- aGm)* (k- Gm0)2
exp - + (28)
202, 207

Algebraically combining inside the summand yields

—(?2(ml - mo)2

M-1
PSE< ( 5 )exp g(ml,mo)

2(0‘211 + 020 + 20’21/cz2
(29)

where

2,02
glm,,my) = ¢~(k=4)*[2B

202 /(12 .
2 dl
B s (30)
0, +(0%/a*)

The term in braces is simply the M-ary union bound based on
the mean primary counts #, and m,. The g parameter repre-
sents a modification of this bound caused by the mixture
density models. Again, if Gm, and Gm,, are large, g(m, m,)
will be almost identically one. In this case the bracket accu-
rately estimates performance and corresponds to the result

that wanid rvtmnntad fensa 1raly aginn agaiimatinn

ha
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on all receiver statistics.

If we assume g = 1, substitute from (8) and divide through
by G2 in the exponent of (29) we have

M_ 1 (ml - m0)2/2
5 exp |- 31
F(m, +mgy)+ 20}%/{12 G?

PSE <

where F=G%/G? is referred to as the excess noise factor of
the photomultiplier. Note that the denominator represents the
usual shot noise-plus-thermal noise contributions obtained in
optical receiver analysis.

ll. Conclusion

An analysis is presented for determining the symbol error
probability of an optical, direct detection, PPM communica-
tion system when background noise, nonideal photomulti-
pliers, and postdetection thermal noise are included. This
study extends earlier studies based on pure count statistics and
simple Gaussian noise models. The effect of the nonideal
photomultiplication is to redistribute the count statistics into
more symmetrical discrete distribution from those used eatlier.
The additive thermal noise adds to this density, providing a
combined continuous density for the PPM slot integration
variables. This combined discrete and Gaussian variable,
referred to here as a mixture density, interconnects the earlier
discrete count and Gaussian models. When the photomultiplier
is high gain and ideal, the count statistics prevail. However,
nonideal and low gain devices redistribute the counts, and
additive noise can no longer be neglected.

Earlier published results have contended that the redistri-
buted counts appear to have a discrete Gaussian envelope
model. It is shown here that under this model the mixture
densities begin to behave as a continuous Gaussian density as
far as computing error probabilities is concerned. This allows
Gaussian M-ary word error probabilities to be used to estimate
performance, with signal-to-noise ratio obtained from the
usual squared mean to variance ratios. Thus, even though
detector statistics are not Gaussian, performance appears to be
adequately obtained from Gaussian performance curves.

75




76

References

. Gagliardi, R., and Karp, S., Optical Communications, Wiley, 1976, Chapter 8.
. Massey, J. L., “Capacity, Cut-off Rate, and Coding for a Direction Detection Optical

Channel,” IEEE Trans. Comm., Vol. COM-26, Nov, 1981.

. Gagliardi, R., and Prati, G., “On Gaussian Error Probabilities in Optical Receivers,”

IEEE Trans Comm., pp. 1742-1747, Sept. 1980.

. McIntyre, R., “Distribution of Gains in Avalanche Photodiodes: Theory,” IEEE Trans.

Electron Devices, pp. 703-712, June 1972.

. Conradi, J., “Distribution of Gains in Avalanche Photodiodes: Experimental,” IEEE

Trans. Electron Devices, pp. 713-718, June 1972.

. Prati, G., and Gagliardi, R., “Encoding and Decoding for Optical PPM Channel,”

IEEE Trans. IT, pp. 88-92, Jan. 1982,

. Lindsey, W. and Simon, M., Telecommunication System Engineering, Prentice-Hall,

Chapter 6. '




1072

1074

lel

1076

10

]o-10

T T T T ] I
(@) {b)
B= o = 9
B=0.8
-
1.0
~ -
.2 _| L ]
1.4 |
.
| ] i ] | |
2 4 6 8 10 0 1 2
y B
Fig. 1. Fractional error in replacing mixture distribution in y by Gaussian distribution with same mean and variance, (rnz =

thermal noise variance; o4 = photon detector spread
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